Nonmonotone Spectral Projected Gradient Methods on Convex Sets

نویسندگان

  • Ernesto G. Birgin
  • José Mario Martínez
  • Marcos Raydan
چکیده

Nonmonotone projected gradient techniques are considered for the minimization of differentiable functions on closed convex sets. The classical projected gradient schemes are extended to include a nonmonotone steplength strategy that is based on the Grippo-Lampariello-Lucidi nonmonotone line search. In particular, the nonmonotone strategy is combined with the spectral gradient choice of steplength to accelerate the convergence process. In addition to the classical projected gradient nonlinear path, the feasible spectral projected gradient is used as a search direction to avoid additional trial projections during the one-dimensional search process. Convergence properties and extensive numerical results are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inexact Spectral Projected Gradient Methods on Convex Sets

A new method is introduced for large scale convex constrained optimization. The general model algorithm involves, at each iteration, the approximate minimization of a convex quadratic on the feasible set of the original problem and global convergence is obtained by means of nonmonotone line searches. A specific algorithm, the Inexact Spectral Projected Gradient method (ISPG), is implemented usi...

متن کامل

Spectral Projected Gradient Method on Convex Sets 227 3 . New Algorithm

The spectral gradient method has proved to be effective for solving large-scale unconstrained optimization problems. It has been recently extended and combined with the projected gradient method for solving optimization problems on convex sets. This combination includes the use of nonmonotone line search techniques to preserve the fast local convergence. In this work we further extend the spect...

متن کامل

SPG: Software for Convex-Constrained Optimization

Fortran 77 software implementing the SPG method is introduced. SPG is a nonmonotone projected gradient algorithm for solving largescale convex-constrained optimization problems. It combines the classical projected gradient method with the spectral gradient choice of steplength and a nonmonotone line search strategy. The user provides objective function and gradient values, and projections onto ...

متن کامل

Spectral projected gradient method for stochastic optimization

We consider the Spectral Projected Gradient method for solving constrained optimization porblems with the objective function in the form of mathematical expectation. It is assumed that the feasible set is convex, closed and easy to project on. The objective function is approximated by a sequence of Sample Average Approximation functions with different sample sizes. The sample size update is bas...

متن کامل

Enhancing Sparsity by Constraining Strategies: Constrained SIRT versus Spectral Projected Gradient Methods

We investigate a constrained version of simultaneous iterative reconstruction techniques (SIRT) from the general viewpoint of projected gradient methods. This connection enable us to assess the computational merit of this algorithm class. We borrow a leaf from numerical optimization to cope with the slow convergence of projected gradient methods and propose an acceleration procedure based on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000